

The Decision to Seed Hurricanes

R. A. Howard, J. E. Matheson, D. W. North

Reproduced with permission.

Readers may view, browse, or download material for temporary copying purposes only, providing these uses are for noncommercial purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from the publisher/copyright owner.

Copyright© 1972 by the American Association for the Advancement of Science

http://www.sciencemag.org

The Decision to Seed Hurricanes

On the basis of present information, the probability of severe damage is less if a hurricane is seeded.

R. A. Howard, J. E. Matheson, D. W. North

The possibility of mitigating the destructive force of hurricanes by seeding them with silver iodide was suggested by R.H.. Simpson in 1961. Early experiments on hurricanes Esther (1961) and Beulah (1963) were encouraging (1), but strong evidence for the effectiveness of seeding was not obtained until the 1969 experiments on Hurricane Debbie (2). Debbie was seeded with massive amounts of silver iodide on 18 and 20 August 1969. Reductions of 31 and 15 percent in peak wind speed were observed after the seedings.

Over the last 10 years property damage caused by hurricanes has averaged \$440 million annually. Hurricane Betsy (1965) and Hurricane Camille (1969) each caused property damage of approximately \$1.5 billion. Any means of reducing the destructive force of hurricanes would therefore have great economic implications.

Decision to Permit Operational Seeding

In the spring of 1970 Stanford Research Institute began a small study for the Environmental Science Service Administration (ESSA) (3) to explore areas in which decision analysis (4, 5) might make significant contributions to ESSA, both in its technical operations and in its management and planning function. At the suggestion of Myron Tribus, Assistant Secretary of Commerce for Science and Technology, we decided to focus the study on the decision problems inherent in hurricane modification (6).

The objective of the present U.S. government program in hurricane modification, Project Stormfury, is strictly scientific : to add to man's knowledge about hurricanes. Any seeding of hurricanes that threaten inhabited coastal areas is prohibited. According to the policy currently in force, seeding will be carried out only if there is less than a 10 percent chance of the hurricane center coming within 50 miles of a populated land area within 18 hours after seeding.

If the seeding of hurricanes threatening inhabited coastal areas is to be undertaken, it will be necessary to modify the existing policies. The purpose of our analysis is to examine the circumstances that bear on the decision to change or not to change these existing policies.

The decision to seed a hurricane threatening a coastal area should therefore be viewed as a two-stage process: (i) a decision is taken to lift the present prohibition against seeding threatening hurricanes and (ii) a decision is taken to seed a particular hurricane a few hours before that hurricane is expected to strike the coast. Our study is concentrated on the policy decision rather than on the tactical decision to seed a particular hurricane at a particular

time. It is also addressed to the experimental question: What would be the value of expanding research in hurricane modification, and, specifically, what would be the value of conducting additional field experiments such as the seedings of Hurricane Debbie in 1969?

Our approach was to consider a representative severe hurricane bearing down on a coastal area and to analyze the decision to seed or not to seed this ' nominal" hurricane. The level of the analysis was relatively coarse, because for the policy decision we did not have to many geographical consider and meteorological details that might influence the tactical decision to seed. We described the hurricane by a single measure of intensity, its maximum sustained surface wind speed, since it is this characteristic that seeding is expected to influence (7). The surface winds, directly and indirectly (through the storm tide), are the primary cause of the destruction wrought by most hurricanes (8). The direct consequence of a decision for or against seeding a hurricane is considered to be the property damage caused by that hurricane. (Injuries and loss of life are often dependent on the issuance and effectiveness of storm warnings; they were not explicitly included in our analysis.)

However, property damage alone is not sufficient to describe the consequence of the decision. There are indirect legal and social effects that arise from the fact that the hurricane is known to have been seeded. For example, the government might have some legal responsibility for the damage caused by a seeded hurricane (9). Even if legal action against the government were not possible, a strong public outay might result if a seeded hurricane caused an unusual amount of damage. Nearly all the government hurricane meteorologists that we questioned said they would seed a hurricane threatening their homes and families-if they could be freed from professional liability.

The importance of the indirect effects stems in large part from uncertainty about the consequences of taking either decision. A hurricane is complex and highly variable, and at present meteor-

Dr. Matheson and Dr. North are with the decision analysis group, Stanford Research Institute, Menlo Park, California 94025. Dr. Howard is with the department of engineering economic systems, Stanford University, Stanford, California 94305, and is a consultant to the decision analysis group, Stanford Research Institute.

ologists cannot predict accurately how the sequences are uncertain for both alterna- assumption that the discrepancies from behavior of a hurricane will evolve over tives; the decision-maker does not know the Holliday relation are independent over time. The effect of seeding is uncertain what amount of property damage will be a 12-hour period and independent of also; consequently, the behavior of a sustained if the hurricane is seeded or is the change in central pressure. These hurricane that is seeded will be a not seeded. We may illustrate the assumptions combination of two uncertain effects: situation facing him in the form of a distribution on wind changes over a 12natural changes and the changes in- decision tree, as shown in Fig. 2. The hour period that is normal with a mean duced by seeding.

The seeding decision would remain alternatives, seeding or not seeding. The percent (11). difficult even if the uncertainty were decision cannot be avoided for inaction removed. Suppose that, if the hurricane is is equivalent to selecting the alternative consistent with rather large natural changes not seeded, the surface wind intensifies of not seeding. Each alternative leads to a in hurricane intensity over a 12-hour as shown by the curve w(t) in Fig. 1 and set of possible consequences: property period. There is about one chance in six that, if the hurricane is seeded, the damage caused by the hurricane and the that a hurricane whose maximum behavior of the wind is that shown by the responsibility incurred by curve w'(t). The effect of the seeding has government. These consequences are, in hour will intensify over a 12hour period been to diminish the wind, thus reducing turn, related to the intensity of the to a maximum wind speed of over 115 property damage, yet the wind speed w'(t1) hurricane and whether or not it was miles per hour; there is also about one when the hurricane strikes land at time t₁ is seeded. The consequences for each chance in six that the winds would higher than the wind speed when the alternative are uncertain at the time the naturally diminish to less than 85 miles seeding was initiated at time to. Even if the decision is made; the uncertainty will per hour. In assessing these probabilities decision maker were certain of w(t₁) and be resolved after the decision-maker only general historical and meteorological w'(t1), he would still have a difficult choice. selects his choice. This decision under information has been used. In a specific If he chooses not to seed, the citizens uncertainty may be examined according hurricane may have more property damage. On the to the usual procedures of a decision meteorological information might indicate other hand, if he chooses to seed, the analysis. We use the information that is that the hurricane would be more likely citizens may not perceive themselves as currently available to better off because of his decision. probability distribution over changes in Instead, they may perceive only that the the intensity of the hurricane as measured storm became worse after the seeding and by its maximum sustained surface wind they may blame the decision-maker for speed for each of the two decision his choice. The trade off between alternatives. Then we use data from past accepting the responsibility for seeding hurricanes to infer a relation between ability distribution for the wind speed if and accepting higher probabilities of severe wind speed and property damage. By the hurricane is seeded. The change in property damage is the crucial issue in assessing the consequences in property wind speed over 12 hours would then be a the decision to seed hurricanes.

determine which of the

alternatives is the preferred choice.

Uncertainty in Hurricane Wind Changes

data had been available on the changes

We began our analysis by considering

Decision under Uncertainty

The decision to seed a threatening hurricane would be taken about 12 hours before the hurricane is predicted to strike the coast. At this time the conFig. 1. Maximum sustained winds over time.

probability distribution for wind changes could have been based largely on these past data. Wind-change data were not available, but data were available for changes over time in the central pressure of hurricanes. The central pressure and the maximum wind speed of a hurricane are closely related; Holliday has shown that the available data can be summarized fairly well by a linear relation (10). We combined this relation with observations of the change in central pressure over a 12-hour period, using the imply а probability decision-maker must select one of the two of zero and a standard deviation of 15.6

in hurricane wind speeds with time, a

Therefore, present information the sustained wind speed is 100 miles per additional situation develop a to intensify or more likely to diminish.

Effect of Seeding

The next step is to develop a probdamage and government responsibility and combination of the natural change the probability that these consequences occurring in the hurricane and the will be achieved, we are able to change caused by seeding. With the limdecision ited data available it is reasonable to assume that the two effects would be independent of each other and act in an additive fashion; for example, if the natural change is an intensification such that the maximum sustained wind speed is increased from 100 to (100 + x)the change in maximum sustained sur-percent, and if the effect of seeding is to face winds over a 12-hour period for a diminish the maximum sustained wind hurricane that is not seeded. If enough speed from 100 to (100 - y) percent, the net observed change over 12

hours is from 100 to (100 + x - y) per tained winds of a seeded hurricane for seeding would not differ from the avercent. A probability distribution has al- each of his three possible answers? If the age effect by more than about 7 perready been assigned for natural changes; clairvoyant says H₂ is true, the assignment cent; thus, a normal distribution cenwe need to assign a probability distribu- process is simple. Seeding has no effect, and tered at the average value with a stantion for the change caused by seeding. In the same probabilities are assigned to the dard deviation of 7 percent was judged an developing this probability distribution it wind speed w' if the hurricane is seeded adequate summary of the information is necessary to distinguish between the as to the wind speed w if the hurricane is available on fluctuations in seeding effect of seeding on one hurricane and not seeded (13). the average effect of seeding on many hurricanes. The effect of seeding on a particular hurricane might be quite different from its average effect.

After discussion with meteorologists associated with Project Stormfury, we concluded that the major uncertainty process is more difficult. The average effect of seeding:

1) H₁, the "beneficial" hypothesis. The average effect of seeding is to reduce the maximum sustained wind speed.

2) H₂, the "null" hypothesis. Seeding has no effect on hurricanes. No change is induced in maximum sustained wind speed.

average effect of seeding is to increase the maximum sustained wind speed.

The scientific basis for the "beneficial" hypothesis, H₁, had its origins in the modified and strengthened by Project interval. Stormfury studies involving a computer model of hurricane dynamics (1,12). This hurricane would be uncertain even if the with a standard deviation of 7 percent. hypothesis, in fact, motivated the average effect of seeding were known. Combining these uncertainties formation of the Project Stormfury Odds of about 2 to 1 were considered research program. A possible basis for the appropriate that the effect of "null" hypothesis, H₂, is that seeding does not release enough latent heat to affect the dynamics of the hurricane. The "detrimental" hypothesis, H₃, has been added complete the to set. Meteorologists do not have a basis in physical theory for H₃ that is comparable to that for H_1 or H_2 .

Even if we know which of the hypotheses is true, there remain uncertainties about the effects of seeding. We now describe the approach we followed in creating a model to formalize existing knowledge about these uncertainties. Then we shall return to the hypotheses.

Let us suppose we have access to a cision: decision tree. clairvoyant who can tell us which hypothesis, H₁, H₂, or H₃, represents the actual effect of seeding on hurricanes. What probability would we assign to the 12-hour change in the maximum sus-

$$P(w' \mid H_2) = P(w) = f_N(100\%, 15.6\%)$$
(1)

If H_1 is the clairvoyant's answer, the about the effect of seeding would be effect is known to be a reduction in hurricane over a 12-hour period to the resolved if we knew which of the fol-storm intensity, but the amount of this change resulting from seeding gives the lowing mutually exclusive and collec- average reduction is uncertain. The total 12-hour change occurring in a tively exhaustive hypotheses described the Simpson theory and the computer studies seeded hurricane if hypothesis H₁ is true. indicate that a reduction of 10 to 20 The probability distribution assigned to percent in wind speed should be ex- w' is then normal with a mean of 85 pected, with 15 percent as the most percent and a standard deviation of 18.6 likely value. This information was sum- percent (1-5): marized by assigning to the change in wind speed a normal probability distribution with a mean of -15 percent and a standard deviation of 7 percent. An 3) H_3 , the "detrimental" hypothesis. The average reduction greater than 15 percent is considered as likely as an average reduction less than 15 percent, and the odds are about 2 to 1 that the average reduction will lie between 22 and percent and a standard deviation of 7 original Simpson theory (1). It has been 8 percent rather than outside this percent. The fluctuations expected when

effects. Combining the uncertainty about fluctuations with the uncertainty about the average effect leads to a probability distribution for the effect of seeding a specific hurricane that is normal with a mean equal to -15 percent and a standard deviation of 10 percent (14).

Adding the natural change in the

$P(w' \mid H_1) = f_N(85\%, 18.6\%)$ (2)

The development of a probability distribution for w', if it is considered that H₃ is true, proceeds in a similar way. The average change effected by seeding is described by a normal probability distribution with a mean of +10 an individual hurricane is seeded are The effect of seeding on an individual normally distributed around the average

Fig. 3 (upper left). Probability distributions on 12-hour wind changes for the seeded and unseeded hurricane. Fig. 4 (right). Property damage plotted against maximum sustained wind speed. Fig. 5 (lower left). Probability distributions on property damage for the seeded and unseeded hurricane.

with the uncertainty about the natural take into account both present meteor- values of two normal probability density 18.6 percent

$$P(w'|H_2) = f_N(110\%, 18.6\%)$$

distribution for w' that represents pres- equation (5, 16, 17): ent information about the change in a seeded hurricane, we multiply each of the above distributions by the probability that is presently assigned to each of the hypotheses being true and sum over where the denominator is the three hypotheses:

$$P(w') = \sum_{i=1}^{8} P(w'|H_i) P(H_i) \quad (4)$$

Assigning Probabilities to

the Hypotheses

The last element in developing a probability distribution for w' is to assign the probabilities $P(H_1)$, $P(H_2)$, and P(H₃). These probabilities should

change in the hurricane over a 12-hour ological information and meteorological functions. The probability density period, we obtain a probability distribu- information before the results of the function for the Debbie results if hytion for w' that is normal with a mean of 1969 Debbie experiments. The models pothesis H_i is true, $P(u_1 = 69 \text{ percent}, u_2 = 69 \text{ percent}, u_2 = 69 \text{ percent}, u_2 = 69 \text{ percent}, u_3 = 69 \text{ percent}, u_4 = 69 \text{ percent}, u_5 = 60 \text{ percent}, u_5 =$ 110 percent and a standard deviation of we have just constructed allow us to 85 percent $|H_i\rangle$, is examine the effect of experimental ob-(3) servations, such as the Debbie results, in revising the probabilities assigned to the We have now developed probability three hypotheses. If a wind speed w' = udistributions for the wind speed w' over a has been observed after a seeding ex-12-hour period following the initiation periment, the posterior probabilities $P(H_i|u)$ of seeding for each of the three are related to the probabilities P(H_i) These numbers can be used to compute hypotheses. To obtain the probability assigned before the experiment by Bayes'

$$P(\mathbf{H}_{i}|u) = \frac{P(u|\mathbf{H}_{i})P(\mathbf{H}_{i})}{P(u)}$$
 (5)

P

$$(u) = P(w' = u) = \sum_{i=1}^{3} P(w' = u | H_i) P(H_i)$$
(6)

The extension to several independent experiments is straightforward. The $P(H_1 | Debbie) =$ Debbie results are considered as two independent experiments in which reductions of 31 and 15 percent in wind speed were observed over a 12-hour period. The posterior probabilities assigned to the hypotheses are computed P(H by multiplying together the appropriate

$$\begin{array}{l} P(69\%, 85\% \mid H_1) = 1.50 \ x \ 2.14 = 3.21 \\ P(69\%, 85\% \mid H_2) = 0.372 \ x \ 1.64 = 0.61 \\ P(69\%, 85\% \mid H_3) = 0.195 \ X \ 0.886 = 0.173 \end{array} \tag{7}$$

the posterior probabilities appropriate after the Debbie results from any set of probabilities assigned to the hypotheses before the Debbie results were known. For example, suppose that before the Debbie experiments the three hypotheses H_1 , H_2 , and H₃ were considered to be equally likely, that is, each had a probability of 1/3. Then, after the Debbie results are incorporated through Bayes' equation, the corresponding posterior probabilities assigned to the hypotheses are

$$\frac{3.21 \times 1/3}{3.21 \times 1/3 + 0.61 \times 1/3 + 0.173 \times 1/3} = .81$$

H₂ | Debbie) = .15

$$P(H_3 | \text{ Debbie}) = .04 \tag{8}$$

that H₁, H₂, and H₃ were equally likely before the Debbie experiments. They thought that seeding was unlikely to have any effect but that, if seeding did have an effect, it was more likely to be a reduction in wind speed than an increase, because a reduction was expected from both the Simpson theory and the computer model studies. Further, the four field experiments that were conducted before Debbie all led to no change or to reductions in the maximum wind speeds (1).

We determined probability assignments for the three hypotheses to reflect present information by two conditions: (i) Before Debbie, meteorologists believed that H₁ was more likely than H₃ if seeding had any effect on a hurricane. (ii) Since Debbie, meteorologists believe that H_1 and H₂ are equally likely.

These conditions led us to use the probabilities

$$P(H_1) = .49$$

$$P(H_2) = .49$$

$$P(H_2) = .02$$
(9)

in our analysis. These posterior probabilities correspond to the pre-Debbie probabilities

$$P(H_1) = .15$$

$$P(H_2) = .75$$
 (10)

$$P(H_2) = .10$$

This set of probability assignments implies that prior to Debbie the odds were 3 to 1 that seeding would have no effect but that, if seeding did have an effect, the odds were 3 to 2 for wind reduction rather than wind intensification. Since the Debbie results, the chance of seeding causing an average intensification of hurricanes is assessed at 1 in 50, and the "null" hypothesis, H₂, of no effect and the "beneficial" hypothesis, H₁, of an average reduction are judged equally likely.

The probability assignments (Eq. 9) representing present information were reviewed with Project Stormfury officials before being used in the analysis. However, the results of the analysis are not particularly sensitive to the specific numbers, as we discuss below.

Probability Distributions on

Wind Speed

seeding and not-seeding alternatives (from can flood low-lying coastal areas. Eqs. 1-4 and Eq. 9). These dis-

However, meteorologists did not believe tributions are plotted in Fig. 3 as complementary cumulative distribution functions. By reading the ordinate values corresponding to an initial wind intensity of 100 percent, we find that the probability assigned to intensification if a hurricane is seeded is .36; if the hurricane is not seeded, the probability is .50. The probability of intensification by 10 percent or more is .18 if a hurricane is seeded and .26 if it is unseeded. For any particular wind speed, the probability that this speed will be exceeded is always greater if the hurricane is unseeded than if it is seeded because the complementary cumulative distribution function for the not-seeding alternative is always above the curve for the seeding alternative. This result is called stochastic dominance of the seeding alternative.

We have now specified the uncertainties about the outcome of the decision to seed. The same methods could be applied if the outcome were specified by several variables rather than simply by the relative change in maximum sustained wind speed. Much of the uncertainty in the outcome is the result of uncertainty about the natural change in hurricane behavior, not about the effect of seeding. This characteristic holds even more strongly if other aspects of hurricane behavior are examined, such as the trajectory of a hurricane or the precipitation it generates. Although it is considered unlikely that seeding would have a significant effect on these features of hurricanes, substantial variations may occur from natural causes.

The uncertainty about the natural behavior of a hurricane makes the issue of government responsibility of paramount importance. The intensification after seeding illustrated in Fig. 1 is a distinct possibility. Even if further experiments confirm that the "beneficial" hypothesis H₁, is true, there would still be about one chance in ten that a seeded hurricane will intensify by 10 percent or more. Meteorological advances and improved computer models may eventually allow many of the natural changes in a hurricane to be predicted accurately, but this capability may require many years to achieve.

Wind Changes and Property Damage

The winds of a hurricane cause prop-We now can compute the probability erty damage directly and indirectly, the distributions on wind speed for the latter by creating a high storm tide that

The data available for past hurricanes do not distinguish wind and storm-tide damage; consequently, a detailed basis is lacking for a causal model relating wind and property damage. In our analysis, we assumed a general power law of the form

$$\mathbf{d} = \mathbf{c}_1 \mathbf{w}^{\mathbf{c}_2} \tag{11}$$

where d is property damage in millions of dollars, w is the maximum sustained wind speed in miles per hour, and c_1 and c_2 are empirical constants to be determined from historical data on hurricanes. We estimated c₂ from data obtained from the American Red Cross on residential damage from 21 hurricanes. Since the Red Cross data were available for counties, we could isolate the damage caused by precipitation-induced flooding rather than by the wind or the storm tide by assuming that such damage occurred well inland. (The Red Cross data are the only statistics available that permit even this crude distinction between causes of damage.) Corrections for construction cost inflation and population growth were included, and c_2 was determined as 4.36 by a linear leastsquares fit of the logarithms (Fig. 4). Thus, a change in the wind speed by a factor x implies a change in property damage by the factor x to the power 4.36. If x is 0.85, corresponding to a 15 percent reduction in maximum wind speed, the corresponding reduction in property damage is 51 percent (18).

The approximations of this method and the limited data indicate that broad limits are appropriate in a sensitivity analysis. If c_2 is 3, the reduction in damage corresponding to a 15 percent reduction in wind speed is 39 percent; if c_2 is 6, the corresponding damage reduction is 62 percent.

Since the probability assignments to wind changes were made on relative rather than absolute changes in maximum sustained wind speeds, the scaling factor c_1 can be assigned as the last step in the analysis. We assume a nominal hurricane whose maximum wind speed at the time of the seeding decision is such that, if no change occurs in the 12 hours before landfall, the property damage will be \$100 million. The analysis for a more or a less severe hurricane can be obtained by a suitable change in scale factor (19).

Using this relationship between property damage and maximum wind speed, we can develop the probability distributions for property damage for the nominal hurricane, whether seeded or unseeded. Figure 5 shows that the seedbetter alternative is to seed.

Further Analysis of the

Decision to Seed

The decision to seed is shown in the form of a decision tree in Fig. 6. The decision to seed or not to seed is shown at the decision node denoted by the small square box; the consequent reso-

ing alternative stochastically dominates the lution of the uncertainty about wind carry out the seeding) ; the expected loss not-seeding alternative : the probability of change is indicated at the chance nodes for the not-seeding alternative is \$116 exceeding a particular amount of property denoted by open circles. For expository million; the difference is \$21.67 million damage is always greater if the hurricane clarity and convenience, especially in the or 18.7 percent. is not seeded than if it is seeded. Hence, later stages of the analysis, it is if property damage is the criterion, the convenient to use discrete approximations see how much they depend on the speto the probability distributions for wind cific assumptions in the model. Stochange (20) (Table 1).

> alternative we can compute the expected the cost of \$0.25 million to

Fig. 6. The seeding decision for the nominal hurricane.

These results should be examined to chastic dominance is a general result that As a measure of the worth of each does not depend on the specific form of relationship between property loss for each alternative by multiplying damage and maximum wind speed (see the property damage for each of the five Eq. 11) ; rather, it depends on the possible outcomes by the probability that probabilities assigned to hypotheses H1, H2, the outcome will be achieved and and H_3 . The probability of H_3 must be summing over the possible consequences. raised to .07 before stochastic dominance The expected loss for the seeding no longer holds. Even if the probability alternative is \$94.33 million (including a of H₃ is raised much higher, seeding still results in the least expected property damage. If $P(H_1)$ is .40, $P(H_2)$ is .40, and $P(H_3)$ is .20, the expected loss for the seeding alternative is \$107.8 million - 7 percent less than for the not-seeding alternative. Variation of the exponent c2 from 3 to 6 does not change the decision: if c_2 is 3, the expected property damage with seeding is 14 percent less; if c_2 is 6, the expected reduction in damage is 22 percent. If the criterion of expected cost is replaced by a nonlinear utility function reflecting aversion to risk, the relative advantage of the seeding alternative is even greater (21). The results of extensive sensitivity analysis may be summarized as follows : The expected loss in terms of property damage appears to be about 20 percent less if the hurricane is seeded. Varying the assumptions of the analysis causes this reduction to vary between 10 and 30 percent but does not change the preferred alternative.

Government Responsibility

The analysis in the section above indicates that, if minimizing the ex pected loss in terms of property damage (and the cost of seeding) is the only criterion, then seeding is preferred. However, an important aspect of the decision-the matter of government responsibility-has not yet been included in the analysis. We have calculated a probability of .36 that a seeded hurricane will intensify between seeding and landfall and a probability of .18 that this intensification will be at least 10 percent. This high probability is largely the result of the great natural variability in hurricane intensity. It is advisable to consider both the legal and the social consequences that might

occur if a seeded hurricane intensified.

The crucial issue in the decision to seed a hurricane threatening a coastal area is the relative desirability of reducing the expected property damage and assuming the responsibility for a dangerous and erratic natural phenomenon. This is difficult to assess, and to have a simple way of regarding it we use the concept of a government responsibility cost, defined as follows. The government is faced with a choice between assuming the responsibility for a hurricane and accepting higher probabilities of property damage. This situation is comparable to one of haggling over price : What An increase of 16 percent in the inten- mines a set of government responsibility increment of property-damage reduction sity of the nominal hurricane corre- costs. As shown in the last section, seedjustifies the assumption of responsibility sponds to property damage of \$191 ing is the preferred decision unless the entailed by seeding a hurricane? This increment of property damage is defined as the government responsibility cost. The point at 30 percent is (.30) (\$191 million), responsibility costs. The government is government responsibility cost is a or \$57.3 million. The responsibility cost indifferent, if the choice is between: means of quantifying the indirect social, is then assessed for other possible legal, and political factors related to changes in hurricane intensity. seeding a hurricane. It is distinguished from the direct measure-property damage-that is assumed to be the same introspective effort on the part of the for both modified and natural hurricanes with the same maximum sustained wind speed.

We define the government responsibility cost so that it is incurred only if the hurricane is seeded. It is conceivable that the public may hold the government responsible for not seeding a severe which implies hurricane. that a responsibility cost should also be attached to the alternative of not seeding. Such a cost would strengthen the implication of the analysis in favor of permitting seeding.

The assessment of government responsibility cost is made by considering the seeding decision in a hypothetical situation in which no uncertainty is present. Suppose the government must choose between two outcomes

1) A seeded hurricane that intensifies 16 percent between the time of seeding and landfall.

2) An unseeded hurricane that intensifies more than 16 percent between the time of seeding and landfall. The property damage from outcome 2 is x percent more than the property damage from outcome 1.

If x is near zero, the government will choose outcome 2. If x is large, the government will prefer outcome 1. We then adjust x until the choice becomes very difficult; that is, the government is indifferent to which outcome it receives. For example, the indifference

Table 1. Probabilities assigned to wind changes occurring in the 12 hours before hurricane landfall. Discrete approximation for five outcomes.

Interval of changes in maximum sustained wind	Representative value in discrete approximation	Probability that wind change will be within interval		
	(%)	If seeded	If not seeded	
Increase of 25% or more	+32	.038	.054	
Increase of 10 to 25%	+16	.143	.206	
Little change, +10 to -10%	0	.392	.480	
Reduction of 10 to 25%	-16	.255	.206	
Reduction of 25% or more	-34	.172	.054	

point might occur when x is 30 percent. icy prohibiting seeding implicitly determillion, so that the corresponding re- government responsibility costs are high. sponsibility cost defined by the indifference

sponsibility costs entails considerable percent more property damage. decision-maker who represents the gov- 16 percent and an unseeded hurricane ernment. The difficulty of determining the that causes 30 percent more property numbers does not provide an excuse to damage. avoid the issue. Any decision or pol-

Let us consider an illustrative set of

1) A seeded hurricane that intensifies 32 percent and an unseeded hurricane The assessment of government re- that intensifies even more, causing 50

2) A seeded hurricane that intensifies

Fig. 7. The seeding decision for the nominal hurricane (government responsibility cost included).

3) A seeded hurricane that neither intensifies nor diminishes (0 percent with these government responsibility costs change in the maximum sustained wind included is diagramed in Fig. 7. Even speed after the seeding) and an unseeded hurricane that intensifies slightly, preferred decision is still to seed. causing 5 percent more property damage.

4) A seeded hurricane that diminishes by more than 10 percent and an by the hurricane. For the \$100-million unseeded hurricane that diminishes by hurricane chosen as the example for this the same amount. (If the hurricane section, the average responsibility cost diminishes after seeding, everyone agrees must be about \$22 million to change the that the government acted wisely; thus, responsibility costs are set at zero.)

The analysis of the seeding decision with these large responsibility costs, the

The responsibility costs needed to change the decision are a substantial fraction of the property damage caused decision. If the hurricane were in the \$1billion class, as Camille

Fig. 8. Expected value of the clairvoyant's information-which hypothesis describes the effect of seeding? (There is no government responsibility cost.)

(1969) and Betsy (1965) were, an average responsibility cost of \$200 million would be needed. In other words, an expected reduction of \$200 million in property damage would be foregone if the government decided not to accept the responsibility of seeding the hurricane.

The importance of the responsibility issue led us to investigate the legal basis for hurricane seeding in some detail. These investigations were carried out by Gary Widman, Hastings College of the Law, University of California. A firm legal basis for operational seeding apparently does not now exist. The doctrine of provides immunity the sovereign government only partial and unpredictable protection against lawsuits, and substantial grounds for bringing such lawsuits might exist (22). A better legal basis for government seeding activities is needed before hurricane seeding could be considered other than as an extraordinary emergency action. Specific congressional legislation may be the best means of investing a government agency with the authority to seed hurricanes threatening the coast of the United States.

Value of Information

One of the most important concepts in 100.0 decision analysis is the value of in-46.7 formation: How much it would be worth to make the decision after rather than 16.3 before uncertainty is resolved? In the case of hurricane modification, how much should be the government pay to learn which of the three hypotheses, H₁, H₂, or 467 H_3 , is actually true (23)? We imagine that 16.3 the government has access to a clairvoyant who has this information and is willing to sell it to the government, if he is paid before he 46.7 makes the information available. It is 16.3 easiest to understand the calculation in terms of the decision to seed one hurricane threatening a coastal area.

Let us consider the choice between the two decision situations shown in Fig. 8. The government can choose to buy the information and make the decision after it has learned which hypothesis is true, or it can choose not to buy the information and can make the seeding decision on the basis of the present uncertainty.

Let us, for the moment, consider only property damage and the cost of seeding and disregard government responsibility costs. If H₁ is true, the preferred decision is 46.7 to seed because the expected

loss is \$69.42 million compared with a loss of \$116.00 million for the alternative of not seeding. If H₂ is true, then by choosing not to seed, the government saves the \$0.25-million cost of seeding; the loss expected from property damage is the same for both alternatives \$116.00 million. If H₃ is true, seeding is a poor choice; the expected loss from property damage is \$167.61 million, \$51.61 million more than for the alternative of not seeding. At the present time, the government does not know what the clairvoyant will say, but probabilities have been assigned to his answers

$$P(H_1) = .49$$

 $P(H_2) = .49$ (12)
 $P(H_3) = .02$

decision situation in Fig. 8 is then com- million, namely \$11.41 million, comes puted by multiplying the probability of from the first or H₂ term. each of the clairvoyant's answers by the answers

Comparing this with the expected loss for the best alternative (seed) without the clairvoyant's information, which was \$94. 33 million, we see that it is \$1.16 million less. This difference represents the expected value of the clairvoyant's information in allowing the government to make a better decision. It is a relatively small number compared with the expected losses because the information is not expected to be of much value---the probability assignments indicate that seeding is already a good idea. Without the clairvoyant's information the government should seed; with the information, clairvoyant's with probability .49, the government will save the cost of seeding (\$0.25 million), and with the low probability .02 it will avert the potentially disastrous intensification expected from H₃, saving \$167.61 million -116 million = 51.61 million. By this reasoning we got the same answer as before for the value of information

(.49) (\$0.25) + (.02) (\$51.61) =

\$1.16 million (14)and we can see that the value is very sensitive to the small probability assigned to H₃.

Now suppose that the government responsibility costs assumed previously are included. The expected value of perfect information is then much higher

because, if H_2 is true, the government est when the government responsibility responsibility costs can be saved by not seeding. If the decision without perfect information is to seed, the expected saving from engaging the clairvoyant is

(.49) (\$0.25 + \$23.28) +

(.02) (\$51.61 + \$53.57) =

\$13.63 million (15)This figure represents 11.75 percent of the expected property damage if the alternative of not seeding is taken for the nominal 'hurricane.

The value of information largely derives from the fact that it allows the government to avoid the responsibility for seeding if seeding turns out to have no effect. The large increase over the value computed in Eq. 13 is due to the contribution of the government respon-The expected loss corresponding to the sibility costs. Most of the increase of \$12.47

The value of information depends on expected loss associated with that answer the extent to which the government is and summing over the three possible willing to assume responsibility for seeding a hurricane. If responsibility were not an issue, the government would seed operationally now, and information would have a comparatively low value in (13) the context of this decision. The value of information is great-

costs are large enough to make the decision essentially even between seeding and not seeding. Still higher responsibility costs cause the value of information to decrease (24).

Value of Further Seeding Experiments

The analysis of the value of a seeding experiment is similar to the determination of the value of the clairvoyant's information. The difference is that the resolution of uncertainty is only partial. The information obtained in the experiment is used in Bayes' equation (Eq. 5) to revise the prior probability assignments to the hypotheses. The original decision is then reevaluated with the posterior probabilities (Fig. 9). The result of the experiment is uncertain when the decision to experiment is made; consequently, the value of experimentation must be computed as an expectation over the possible posterior decision situations. The situation can be diagramed in tree form as shown in Fig. 9

The analysis for two experimental seedings is given in Table 2 (25). The values assumed above for the govern-

Fig. 9. Value of a seeding experiment (government responsibility cost included).

ment responsibility costs have been used. The expected value of the experiment in one improving operational seeding decision is \$5.39 million, slightly less than twice the value of a single experimental seeding and more than ten times the assumed experimental cost, \$0.50 million. This value represents 4.7 percent of the expected property damage if the alternative of not seeding is taken. In the discrete version used in the analysis, one of five possible value (see Table 1) is taken as representative of the observed change in hurricane intensity over a 12-hour period following seeding: -34, -16, 0, +16, and +32 percent. The order in which the results are obtained is not significant, and a total of 15 pairs of results could be obtained with two experiments (Table 2). These pairs might be placed in three groups: favorable, unfavorable, and mixed results. The probability of obtaining a pair of favorable results (- 34, - 34; - 34, - 16; - 34, 0; and - 16, - 16 percent) (26) in the two experimental seedings is .327; a pair of results in this group would provide substantial confirmation of hypothesis

H₁.

For example, a repetition of the pair

Table 2. Evaluation of a future experiment with two (independent) experimental seedings. Government responsibility cost is included.

	(Observed					Sı	lbsequent oper	rational
	change			Posterior probability			seeding decision		
		in	Prior	of hypotheses		expected values			
	wind speed pr		prob-				(million dollars)		
			ability				Loss	Loss	Posterior
	U_1	U_2	of obser-	H_1	H_2	H_3	with	with the	valueof
							seeding	better	perfect
			vation				alter-	alter-	informa-
							native	native	tion
	- 34	- 34	.0441	.97	.03	<.005	79.87	79.87	0.80
	- 34	- 16	.1009	.89	.11	<.005	84.67	84.67	2.68
	- 34	0	.1140	.77	.22	<.005	92.11	92.11	5.64
	- 16	- 16	.0684	.69	.30	<.005	97.08	97.08	7.53
			.3274						
	- 34	+16	.0324	.65	.34	.01	100.16	100.16	9.06
	- 34	+32	.0078	.60	.37	.03	105.27	105.27	12.10
	- 16	0	.1915	.49	.51	.01	110.25	110.25	12.78
	- 16	+16	.0651	.34	.64	.02	120.07	116.00	13.05
	0	0	.1610	.28	.70	.02	123.37	116.00	10.81
	- 16	+32	.016/	29	.65	.06	126.05	116.00	11.15
	0	+10	.1229	.18	.19	.05	151.55	110.00	0.78
			.5974						
	0	+32	.0332	.14	.77	.09	138.02	116.00	5.51
	+16	+16	.0251-	.10	.83	.07	138.62	116.00	3.98
	+16	+32	.0145	.08	.75	.17	148.37	116.00	3.02
	+32	+32	.0024	.05	.59	.36	165.72	116.00	1.98
			.0752						
			Valu	e of see	ding dec	ision with 1	orior informa	ition	110.92
		Expe	ected value o	f seedin	g decisio	on with seed	ding experim	ents	105.53
						Val	ue of experin	nent	5.39
						C	Cost of experiment	ment	0.50
						Net expected	ed value of exper	iment	4.89

of results obtained with Debbie in 1969 (- 34, - 16 percent in the discrete approximation) would lead to posterior probabilities of .89 for H₁, .11 for H₂, and less than .005 for H₃. A probability of .075 is computed for a pair of strongly unfavorable results (0, +32; +16, +16; +16, +32; +32, +32 percent); in this case the probability assigned to H₁ would be revised strongly downward. The remaining mixed pairs of results do not significantly confirm or deny H₁, and these results have a total probability of .595. Within this group a small probability (.055) is accorded to conflicting results in the two experiments (-34, +16; -34, +32;-16, +16; -16, +32 percent).

Another Approach to Determining the Value

of Seeding Experiments

The preceding discussion indicates that the value of experiments is sensitive to the government responsibility costs that are assumed in the analysis. We may wish to determine the value of experiments in a different manner in which the issue of government responsibility is treated implicitly.

Suppose that operational seeding will be permitted only after another successful result is obtained in a pair of experiments of the Debbie type. This approximation gives a lower bound to the value of experiments because only a successful experimental result is regarded as valuable. Even if wind reductions are not observed, knowledge gained about the effects of seeding may have implications for future successful operational seeding.

The probability of a favorable pair of results in two experimental seedings of a hurricane was computed as .327. If favorable experimental results are obtained and a subsequent hurricane is seeded operationally, the expected reducti on in property-damage losses is \$37.88 million. Even if government responsibility costs are included, the reduction in expected losses is \$26.80 million. Since these reductions occur with a probability of .327, the expected value of the experiment in improving one operational decision is \$12.40 million if only the property damage is considered and \$8.77 million if the decrease in property damage is partially offset by the government responsibility costs. The figures \$8.77 million and \$12.40 million represent 7.6 and 10.7 percent, respectively, of the \$116-million property damage expected from the notseeding alternative in the seeding decision for the nominal hurricane.

We see that the value of experiments is considerably higher than the values computed earlier. This difference results from the high responsibility costs implicit in the decision not to seed on the basis of present information. It may be a reasonable assumption that a bad outcome for the first seeding of a hurricane threatening a coastal area would have much less severe legal and social consequences if it were preceded by another successful experiment. Therefore, lowering the government responsibility costs may be appropriate after another successful field experiment.

Generalizing the Value of

Additional Information

The preceding discussions are directed specifically toward updating our information about which hypothesis, H_1 , H_2 , or H_3 , describes the effect of seeding on the maximum sustained wind speed of a hurricane. The analysis has been done for a single seeding decision for a moderately intense hurricane threatening a coastal area. Per-

feet information applies not only to a single hurricane but to all hurricanes that might be seeded operationally. The numerical results for the single nominal hurricane are summarized in the extreme left column of Table 3 and are extended to multiple hurricanes in the remaining columns.

Even if only half the hurricanes could be seeded because of tactical considerations having to do with precipitation, hurricane trajectory, and so on, the expected annual benefit from perfect information is \$26 million. If we assume that only half the hurricanes could be seeded, and discount the expected benefits of perfect information for all future hurricane seasons at a discount rate of 7 percent, we arrive at \$370 million. This figure represents the value of a "perfect" experiment that would determine whether H₁ is true.

A single repetition of the 1969 Hurricane Debbie experiment has an expected value of \$5.39 million in the context of the nominal hurricane, or about 4.7 percent of expected property damage. For the decision to seed a single hurricane in the billion-dollar range, the expected value of the experiment is ten times as high, about \$50 million. For one hurricane season the value is 4.7 percent of \$220 million, or \$10.2 million (it is assumed again that various tactical considerations might preclude seeding in half of the cases). For all future hurricane seasons, with a discount rate of 7 percent, the value is \$146 million compared with an experimental cost of about \$500,000. The benefit to cost ratio is therefore about 300. Even if only a single hurricane season is considered, the expected benefits are 20 times greater than the cost of the experiment and ten times the present annual budget for Project Stormfury.

Experimental Capability Decision

The occurrence of hurricanes is a random phenomenon. Therefore, it is uncertain whether there will be an opportunity for an experimental seeding before the arrival of a threatening storm that might be operationally seeded. Opportunities for experimental seeding have been scarce. In the last few years there have been only six experimental seedings, and these have been conducted on three hurricanes, Esther (1961), Beulah (1963), and Debbie (1969) (7). Experimental seedings have been limited to a small region

Table 3. Summary of the value of additional information on the effect of seeding. Only the 50 percent of hurricanes that are assumed to be possible candidates for seeding on the basis of tactical considerations are considered. If all hurricanes are assumed to be candidates for operational seeding, the figures of the last two columns should be doubled.

L	Nominal hurricane used in analysis		Single hurricane	All future hurricane seasons,
Item	Million dollars	Per- cent- age	(million dollars)	at 7% (million dollars)
Expected property damage without seeding	116.0	100.0	220.0	3142
Expected value of perfect information	13.6	11.8	26.0	370
Expected value of a field experiment consisting of two experimental seedings	5.4	4.7	10.2	146
Expected value of field experiments: With government responsibility costs Government responsibility costs = 0	8.8 12.4	7.6 10.7	16.6 23.5	238 335

* If it is assumed that prior operational seeding is not permitted.

craft based in Puerto Rico, and few ricane seeding in the Pacific Ocean hurricanes have passed through this since the benefits expected from this region.

There are many other regions of the of at least 5 (29). ocean where hurricanes might be found that satisfy the present criterion for experimental seeding - that is, the hurricane will be seeded only if the probability is less than .10 that it will come within 50 miles of a populated land area within 18 hours after seeding. However, a decision to expand the present experimental capability of Project Stormfury would need to be made well before the experiment itself. Whereas the seeding itself requires only that an aircraft be fitted with silver iodide pyrotechnic generators, the monitoring of the subsequent development of the to higher probabilities of severe storm hurricane requires other aircraft fitted with the appropriate instrumentation. The requirements in equipment, and communications training, support facilities are substantial. In ad- an emergency basis. We hope that dition, permission may be needed from further experimental results and a fornations whose shores might be threat- mal analysis of the tactical decision to ened by the seeded hurricane. The ex- seed a particular hurricane will precede perimental decision, then, involves an the emergency. However, a decision may investment in the capability to perform be required before additional exan experimental seeding. Whether an perimental or analytical results are experiment is performed depends on the available. A hurricane with the intensity uncertain occurrences of hurricanes in the of Camille threatening a populous experimental areas.

perimental opportunity for Stormfury's present capability is about one full hurricane season. There was no not be resolved on strictly scientific opportunity during 1970. Preliminary grounds. It is a complex decision whose estimates of the cost of a capability to uncertain consequences affect many seed hurricanes in the Pacific are about \$ people. Appropriate legal and political experimentally seedable hurricanes in the making the hurricane-seeding decision, and Pacific appears to be more than twice further analysis should be conducted to that in the Atlantic (28). Therefore, it support these institutions in carrying out appears advisable to develop a

of the Atlantic Ocean accessible to air- capability to conduct experimental hurcapability outweigh the costs by a factor

Conclusions from the Analysis

The decision to seed a hurricane imposes a great responsibility on public officials. This decision cannot be avoided because inaction is equivalent to a decision not to permit seeding. Either the government must accept the responsibility of a seeding that may be perceived by the public as deleterious, or it must accept the responsibility for not seeding and thereby exposing the public damage.

Our report to the National Oceanic crew and Atmospheric Administration recand ommended that seeding be permitted on coastal area of the United States would The expected time before another ex- confront public officials with an agoniz-Project ing but unavoidable choice.

The decision to seed hurricanes can million (27). The incidence of institutions should be designated for their work.

Role of Decision Analysis

The results of a decision analysis depend on the information available at the time it is performed. Decision analysis should not be used to arrive at a static recommendation to be verified by further research, rather it should be used as a dynamic tool for making necessary decisions at any time. Various sensitivity analyses included here indicate how new information might be expected to influence policy recommendations. However, the advent of a severe hurricane will necessitate a decision on the basis of the information then available.

The analysis of hurricane modification points up a difficulty that is common in public decision-making on complex technological issues. When the consequences of deploying new technology are uncertain, who will make the choice? While many individuals or groups may share responsibility, decision analysis conceptually separates the roles of the executive decision-maker, the expert, and the analyst. The analyst's role is to structure a complex problem in a tractable manner so that the uncertain consequences of the alternative actions may be assessed. Various experts provide the technical information from which the analysis is fashioned. The decision-maker acts for society providing the basis for choosing among the alternatives. The analysis provides a mechanism for integration and communication so that the technical judgments of the experts and the value judgments of the decision maker may be seen in relation to each other, examined, and debated. Decision analysis makes not only the decision but the decision process a matter of formal record. For any complex decision that may affect the lives of millions, a decision analysis showing explicitly the uncertainties and decision criteria can and. should be carried out.

References and Notes

- 1. R. H. Simpson and J. S. Malkus, Sci. Amer. 211, 27 (Dec. 1964).
- 2. R. C. Gentry, Science 168, 473 (1970). 3. Now incorporated in the National Oceanic
- and Atmospheric Administration
- 4. R. A. Howard, Proceedings of the Fourth International Conference on Operational Research (Wiley, New York, 1966).
- 5. ----, IEEE Trans. Syst. Sci. Cybern. 4 (1968), p. 211.
- 6. A detailed discussion of the research is to be found in the project's final report [D. W. Boyd, R. A. Howard, J. E. Matheson, D. W. North, *Decision Analysis of Hurricane Modification* (Project 8503, Stanford Research Institute, Menlo Park, Calif., Stanford Research Institute, Mento Luin, 1971)]. This report is available through the Na-1971)]. This report is available through the National Technical Information Service, U.S. Department of Commerce, Washington, D.C., accession number COM-71-00784.
- 7. The meteorological information leading to this

approximation is discussed in detail in the SRI project infinit report (6), especially appendix B. Meteorologists connected with Project Stormfury believe it highly improbable that seeding will cause any substantial change in the course of the hurricane, and other important consequences of seeding are not foreseen at this time. We wish to stress that our role in the this time. We wish to stress that our role in the decision analysis of hurricane modification has been to provide the methodology for analyzing a complex decision with uncertain consequences. The specific assumptions have been provided by the hurricane metoorologists associated with Project Stormfury and by other experts in relevant fields. Because of space limitations these assumptions cannot be discussed in detail in this article; the interested reader is advised to consult the project's final report or communicate diractly with the outbors. The ture of communicate directly with the authors. The type of seeding is assumed to be the same as that used in the Hurricane Debbie experiments: massive multiple seeding of the clouds in the outer eyewall-region with silver iodide. During September 1971, Project Stormfury conducted seeding experiments of a different type on Hurricane Ginger (R. C. Gentry, internal communication, National Oceanic and Atmospheric Administration, October 1971). The Ginger experiment involved the seeding of clouds in the rain bands well outside the eyewall region. This "rainsector" experiment was selected because Ginger "rainsector" experiment was selected because Ginger had a large and poorly formed eyewall and was judged not to be a good subject for eyewall-region seeding. Although some changes in cloud structure and wind field occurred at a time when they might have been caused by seeding, these changes were minor compared with the dramatic changes that occurred in Hurricane Debbie after seeding. Because of the difference in type of conditional the Ginger seaults do not implic a peed for seeding, the Ginger results do not imply a need for revision of the analysis or data presented in this article.

- 8. In some hurricanes, such as Diane (1955) and Camille (1969), precipitation-induced inland flooding has also been an important cause of property damage Seeding might cause some increase in Seeding Seeding might cause some increase in precipitation. In considering the policy decision to permit seeding we ignored these precipitation effects, but they might sometimes be important in the
- errects, but mey might sometimes be important in the decision to seed a specific hurricane.
 9. Throughout the analysis it is assumed that seeding would be authorized and carried out by some agency of the federal government.
 10. C. Holliday, *Technical Memorandum WBTM* SR-45
- C. Holliday, Technical Memorandum WBTM SR-45 (Environmental Science Service Administration, Washington, D.C., 1969).
 The details of the derivation of this probability distribution are given in appendix B of (6). The indirect approach of using the Holliday relation combined with pressure change observations was first suggested by R. C. Sheets of the National Hurricane Research Laboratory.
 S. L. Rosenthal, Technical Memorandum ERLTM-NHRL 88 (Environmental Science Service Administration Washington D.C. 1990)
- S. L. Rosenthal, *Technical Memorandum ERLTM-NHRL* 88 (Environmental Science Service Administration, Washington, D.C., 1970). See also *Project Stormfury Annual Report* 1970 (National Hurricane Research Laboratory, Miami, 1971).
 A probability distribution on an uncertain quantity x will be denoted P(x) whether x takes on discrete or continuous values. If x is discrete, P(x) will be the probability mass function; if x is continuous, P(x) will be the probability density function. A probability distribution of the set of probability mass function; if x is continuous, P(x) will be the probability density function. A probability distribution of the normal or Gaussian family specified by its mean m and standard deviation σ will be denoted f_x (m, σ).
 14. The average effect of seeding and the fluctuation from the average may be regarded as (independent) normal random variables whose sum represents the effect of seeding on a specific
- (independent) normal random variables whose sum represents the effect of seeding on a specific hurricane. According to well-known results in probability theory, this sum will be normally distributed with a mean equal to the sum of the two means and a standard deviation equal to the square root of the sum of the squares of the two standard deviations. The effect of seeding and the natural change in the
- standard deviations.
 15. The effect of seeding and the natural change in the storm are described as independent normal random variables and the total change is their sum. The independence assumption is judged an appropriate summary of present knowledge; sensitivity to this assumption is examined in (6). Important assumptions such as this one were reviewed with Project Stormfury meteorologists. A letter to us Project Stormfury meteorologists. A letter to us from R. C. Gentry (October 1970) stated, "while seeding may "affect different hurricanes by differ

ent amounts, we are not yet prepared to predict these differences." The assumption of independence does differences." The assumption of independence does not deny that there may be a relationship between the natural change occurring in a hurricane and the effect of modification. When information about this relationship becomes available, it should be incorporated into the analysis and the independence

- incorporated into the analysis and the independence assumption should be withdrawn.
 16. H. Raiffa, Decision Analysis: Introductory Lectures on Choices Under Uncertainty (Addiscn-Wesley, Reading, Mass., 1968); M. Tribus, Rational Descriptions, Decisions, and Designs (Pergamon, New York, 1969).
 17. D. W. North, IEEE Trans. Syst. Sci. Cybern. 4 (1968), p. 200.
 18. The details of the calculation of a structure in the second seco
- 18. The details of the calculation of c_2 are given in (6). Similar relationships between maximum sustained Similar relationships between maximum sustained wind speed and property damage have been stated by other investigators [R. L. Hendrick and D. G. Friedman, in *Human Dimensions in Weather Modification*, W. R. Derrick Sewell, Ed. (Univ. of Chicago Press, Chicago, 1966), pp. 227246]. In November 1971, D. G. Friedman communicated to us some results from analyzing insurance claim data. He finds an exponent of 6.7; this value would lead to much larger reductions in property damage than were assumed in our analysis. Other investigators have suggested an equation of the form $d = c_1 (w - w_0)^2$, where c, and w_0 are empirical constants (R. C. Gentry, private communication).
- 19. This procedure is an approximation, which depends on the fact that seeding costs are small compared with costs of property damage.20. It is shown in (6) that the results are not comprise to the discrete comparing the second se
- sensitive to the discrete approximation.
 21. For example, if an exponential utility function with a risk aversion coefficient of y = 0.001 is with a risk aversion coefficient of y = 0.001 is used, the difference between the certain equivalents for the two alternatives increases from \$21.67 million to \$24.2 million. Because of stochastic dominance, any risk attitude will always leave seeding as the preferred alternative. Further discussion on risk preference may be found in (5) and (17) and (17).
- 22. These issues are discussed in detail in ap-
- 22. These issues are discussed in detail in appendixes E and F of (6).
 23. In answering this question we assume that the government is willing to pay up to \$1 to avoid \$1 of property damage.
 24. It is possible for the responsibility costs to be so high that a hurricane would not be seeded even if it were certain that H₁ is true. This amount of responsibility cost implies that the government would prefer an unseeded hurricane to a seeded hurricane that caused only half as much property damage.
- damage. For these calculations a system of computer programs for evaluating large decision trees, developed by W. Rousseau of Stanford Research Institute, was used. 25
- Institute, was used. These discrete outcomes correspond to a reduction of 10 percent or more. The discrete approximation simplifies the analysis by restricting the number of possible experimental results. Earlier we considered the revision of probabilities based on the results of the 1969 Hurricane Debbie experiments. There the discrete approximation was not used, but it
- discrete approximation was not used, but it would have given equivalent results. R. C. Gentry, personal communication. In arriving at this figure it was assumed that military aircraft based in the Pacific could be used in the seeding.
- Project Stormfury Annual Report 1968 (National 28 Hurricane Research Laboratory, Miami, 1969).
- The details of this calculation are given in (6).
- 29. The details of this calculation are given in (6). 30. This article summarizes research performed for the National Oceanic and Atmospheric Administration, U.S. Department of Commerce, contract 0-35172; the project leader is D. W. North. The authors acknowledge the substantial contribution of Dr. Dean W. Boyd. The authors also wish to acknowledge Professor Gary Widman of Hastings College of the Law, University of California, San Francisco, for leader proceeds supporting the project College of the Law, University of California, San Francisco, for legal research supporting the project and Dr. Cecil Gentry, Dr. Robert Simpson, Dr. Joanne Simpson, and many others who have been associated with Project Stormfury for their assistance and cooperation. The findings and conclusions presented are the sole responsibility of the authors and do not necessarily reflect the views of the U.S. government or any of the individuals mentioned above.